THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Supplementary Exercise 1

1. Define a relation \sim on \mathbb{R}^{2} such that $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if $x-x^{\prime}, y-y^{\prime} \in \mathbb{Z}$.
(a) Prove that \sim is an equivalence relation.
(b) Describe the elements of \mathbb{R}^{2} / \sim.
(c) Repeat (a) and (b) by changing the relation to be the following: $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if $x-x^{\prime} \in \mathbb{Z}$ and $y=y^{\prime}$.
2. Let $M_{n}(\mathbb{R})$ be the set of all n by n real matrices. Suppose that \sim is a relation on $M_{n}(\mathbb{R})$ defined by $A \sim B$ if there exists an invertible matrix Q such that $B=A Q$.
(a) Prove that \sim is an equivalence relation.
(b) Describe the elements of the equivalence class which contains the identity matrix I.
3. Let n be a positive integer and let \sim be a relation defined on \mathbb{Z} which is given by $a \sim b$ if $b-a$ is divisible by n.
(a) Show that \sim is an equivalence relation.
(b) Write down the elements of $\mathbb{Z}_{n}:=\mathbb{Z} / \sim$.
(c) Prove that multiplication on \mathbb{Z} induces a multiplication on \mathbb{Z}_{n}.
(d) What is the remainder when 7001×492 is divided by 7 ?
(Hint: What is $[7001 \cdot 492]$ in \mathbb{Z}_{7} ?)
4. For an incidence geometry, prove that two distinct lines can have most one point in common, i.e. if l and m are distinct lines, then $|l \cap m| \leq 1$.
5. For an incidence geometry, prove that:
(a) if P be a point, then there exists at least one line that does not contain P;
(b) there exist three distinct lines such that no point lies on all three of them.

Lecturer's comment:

1. (a) (i) Let $(x, y) \in \mathbb{R}^{2}$, since $x-x=y-y=0 \in \mathbb{Z}$, so $(x, y) \sim(x, y)$
(ii) Let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ and $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$. Then $x-x^{\prime}, y-y^{\prime} \in \mathbb{Z}$, which implies that $x^{\prime}-x=-\left(x-x^{\prime}\right)$ and $y^{\prime}-y=-\left(y-y^{\prime}\right)$ are in \mathbb{Z} and so $\left(x^{\prime}, y^{\prime}\right) \sim(x, y)$.
(iii) Let $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbb{R}^{2}$ such that $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right) \sim\left(x^{\prime \prime}, y^{\prime \prime}\right)$. Then $x-x^{\prime}, x^{\prime}-x^{\prime \prime}, y-y^{\prime}, y^{\prime}-y^{\prime \prime} \in \mathbb{Z}$. Therefore, $x-x^{\prime \prime}=\left(x-x^{\prime}\right)+\left(x^{\prime}-x^{\prime \prime}\right) \in \mathbb{Z}$ and $y-y^{\prime \prime}=\left(y-y^{\prime}\right)+\left(y^{\prime}-y^{\prime \prime}\right) \in \mathbb{Z}$. Hence, $(x, y) \sim\left(x^{\prime \prime}, y^{\prime \prime}\right)$.
Therefore, \sim is an equivalence relation on \mathbb{R}^{2}.
(b) $\mathbb{R}^{2} / \sim=\{[(x, y)]: 0 \leq x, y<1\}$.
(Remark: if you regard \mathbb{R}^{2} as a piece of paper and try to glue the points which are related by \sim, then you will get a torus.)
(c) The proof is similar to (a) and $\mathbb{R}^{2} / \sim=\{[(x, y)]: 0 \leq x<1, y \in \mathbb{R}\}$. Again \mathbb{R}^{2} / \sim may be regarded as a cylinder.
2. (a) (i) Let $A \in M_{n}(\mathbb{R})$, since $A=A I$ where I is the identity matrix which is invertible, $A \sim A$.
(ii) Let $A, B \in M_{n}(\mathbb{R})$ and $A \sim B$, then there exists an invertible matrix Q such that $B=A Q$. Then, we have $A=B Q^{-1}$ where Q^{-1} is an invertible matrix and so $B \sim A$.
(iii) Let $A, B, C \in M_{n}(\mathbb{R})$ such that $A \sim B$ and $B \sim C$. Then there exist invertible matrices P and Q such that $A=B P$ and $B=C Q$. Therefore, $A=(C Q) P=C(P Q)$. Note that the product of two invertible matrices is an invertible matrix, so $P Q$ is invertible and $A \sim C$.
Therefore, \sim is an equivalence relation on $M_{n}(\mathbb{R})$.
(b) Note that $[I]=\left\{P \in M_{n}(\mathbb{R}): P \sim I\right\}$.

We claim that $[I]$ is the set of all invertible matrices, which is denoted by $G L_{n}(\mathbb{R})$.
Firstly, if $P \in[I]$, then $P \sim I$ which means $P=I Q=Q$ for some invertible matrix Q. Therefore, P is invertible and $[I] \subset G L_{n}(\mathbb{R})$.
Secondly, if $P \in G L_{n}(\mathbb{R})$, i.e. P is invertible. If we want to show $P \in[I]$, we have to show that $P \sim I$, i.e. there exists some invertible matirx Q such that $P=I Q$, but it is true simply by taking $Q=P$. Therefore, $G L_{n}(\mathbb{R}) \subset[I]$.
Therefore, $[I]=G L_{n}(\mathbb{R})$.
(Remark: To show two sets A and B are the same, a standard way is showing that both $A \subset B$ and $B \subset A$ are true.)
3. (a) Let a, b and c be integers.

Since $a-a=0$ which is divisible by $n, a \sim a$.
Suppose that $a \sim b$, then $b-a=n p$ for some integer p.
Then $a-b=-n p=n(-p)$ which is divisible by n, so $b \sim a$.
Suppose that $a \sim b$ and $b \sim c$, then $b-a=n p$ and $c-b=n q$ for some integers p and q.
Then $c-a=(c-b)+(b-a)=n(p+q) . p+q$ is an integer, so $c-a$ is divisible by n and $c \sim a$.

As a result, \sim is an equivalence relation.
(b) $\mathbb{Z}_{n}:=\mathbb{Z} / \sim=\{[0],[1], \cdots,[n]\}$.
(c) It suffices to show that if $a \sim a^{\prime}$ and $b \sim b^{\prime}$ then $a \cdot b \sim a^{\prime} \cdot b^{\prime}$.

Suppose that $a^{\prime}-a=n p$ and $b^{\prime}-b=n q$ for some integers p and q.
Then $\left(a^{\prime} \cdot b^{\prime}\right)-(a \cdot b)=(a+n p) \cdot(b+n q)-a \cdot b=n(a q+b p+n p g) . a q+b p+n p g$ is an integer, so $\left(a^{\prime} \cdot b^{\prime}\right)-(a \cdot b)$ is divisible by n and $a \cdot b \sim a^{\prime} \cdot b^{\prime}$.
(d) Note that $[7001]=[1]$ and $[492]=[2]$ in \mathbb{Z}_{7}, so $[7001 \cdot 492]=[7001] \cdot[492]=[1] \cdot[2]=[2]$.

Therefore, when 7001×492 is divided by 7 , the remainder is 2 .
4. Suppose that p and q are two mathematical statementg. If we want to show that the statement $p \rightarrow q$ is true, here are two of the ways to do:

- (Prove by contrapositive) Prove that $(\neg q) \rightarrow(\neg p)$, which is logically equivalent to $p \rightarrow q$, is true.
- (Prove by contradiction) We want to show the negation of the statement we want to prove is false, i.e. contradiction exists. Note that $p \rightarrow q$ is logically equivalent to $\neg p \vee q$ and so its negation is $p \wedge(\neg q)$.

For the statement in the question, p is the statement " l and m are distinct lines", q is the statement $|l \cap m| \leq 1$.

We will show $p \rightarrow q$ is true by using different methods:
(Prove by contrapositive) Suppose that $|l \cap m|>1(\neg q)$, i.e. there exist two points A and B such that both A and B lie on l as well as m. By axiom I1, l and m must be the same $(\neg p)$.
(Prove by contradiction) Suppose that l and m are distinct lines and $|l \cap m|>1(p \wedge(\neg q))$. Then there exist two points A and B such that both A and B lie on l as well as m. By axiom I1, l and m must be the same which is a contradiction.
5. (a) By axiom I3, there exist three noncollinear points R, S and T.
(Case 1) $P \in\{R, S, T\}$
Without loss of generality, let $R=P$.
By axiom I1, there exists unique line $l_{S T}$ such that $S, T \in l_{S T}$.
Note that $l_{S T}$ does not contain P, otherwise it contradicts to the assumption that P, S and T are noncollinear.
(Case 2) $P \notin\{R, S, T\}$
By axiom I1, there exists unique lines $l_{S T}$ such that $S, T \in l_{S T}$.
If P does not lie on $l_{S T}$, then $l_{S T}$ is the line required.
If $P \in l_{S T}$. By axiom I1, there exists unique line $l_{R S}$ such that $R, S \in l_{R S}$.
If P lies on $l_{R S}$, then both P and S lie on $l_{S T}$ and $l_{R S}$. By axiom $\mathbf{I 1}, l_{S T}=l_{R S}$ which is a line that contains R, S and T (Contradiction).
Therefore, P does not lie on $l_{S T}$
(b) By axiom I3, there exist three noncollinear points R, S and T.

By axiom I1, there exist unique line $l_{R S}, l_{S T}$ and $l_{R T}$ such that $R, S \in l_{R S}, S, T \in l_{S T}$ and $R, T \in l_{R T}$.
Firstly, $l_{R S}, l_{S T}$ and $l_{R T}$ are distinct lines, otherwise two of them will be the same line which contains all R, S and T which is a contradiction.
Secondly, if there exists a point P such that P lies on all three of them, in particular P lies on $l_{R S}$ and $l_{S T}$ which forces $P=S$ (By question 4 or you may say it is a direct consequence of axiom I1. However, $P=S$ which lies on $l_{R T}$ which contradicts to the assumption that P, S and T are noncollinear.

Therefore, there exists no point which lies on both $l_{R S}, l_{S T}$ and $l_{R T}$.

