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1. Define a relation ∼ on R2 such that (x, y) ∼ (x′, y′) if and only if x− x′, y − y′ ∈ Z.

(a) Prove that ∼ is an equivalence relation.

(b) Describe the elements of R2/ ∼.

(c) Repeat (a) and (b) by changing the relation to be the following:

(x, y) ∼ (x′, y′) if and only if x− x′ ∈ Z and y = y′.

2. Let Mn(R) be the set of all n by n real matrices. Suppose that ∼ is a relation on Mn(R) defined

by A ∼ B if there exists an invertible matrix Q such that B = AQ.

(a) Prove that ∼ is an equivalence relation.

(b) Describe the elements of the equivalence class which contains the identity matrix I.

3. Let n be a positive integer and let ∼ be a relation defined on Z which is given by a ∼ b if b− a is

divisible by n.

(a) Show that ∼ is an equivalence relation.

(b) Write down the elements of Zn := Z/ ∼.

(c) Prove that multiplication on Z induces a multiplication on Zn.

(d) What is the remainder when 7001× 492 is divided by 7?

(Hint: What is [7001 · 492] in Z7?)

4. For an incidence geometry, prove that two distinct lines can have most one point in common, i.e.

if l and m are distinct lines, then |l ∩m| ≤ 1.

5. For an incidence geometry, prove that:

(a) if P be a point, then there exists at least one line that does not contain P ;

(b) there exist three distinct lines such that no point lies on all three of them.

Lecturer’s comment:

1. (a) (i) Let (x, y) ∈ R2, since x− x = y − y = 0 ∈ Z, so (x, y) ∼ (x, y)

(ii) Let (x, y), (x′, y′) ∈ R2 and (x, y) ∼ (x′, y′). Then x − x′, y − y′ ∈ Z, which implies that

x′ − x = −(x− x′) and y′ − y = −(y − y′) are in Z and so (x′, y′) ∼ (x, y).

(iii) Let (x, y), (x′, y′), (x′′, y′′) ∈ R2 such that (x, y) ∼ (x′, y′) and (x′, y′) ∼ (x′′, y′′). Then

x − x′, x′ − x′′, y − y′, y′ − y′′ ∈ Z. Therefore, x − x′′ = (x − x′) + (x′ − x′′) ∈ Z and

y − y′′ = (y − y′) + (y′ − y′′) ∈ Z. Hence, (x, y) ∼ (x′′, y′′).

Therefore, ∼ is an equivalence relation on R2.
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(b) R2/ ∼= {[(x, y)] : 0 ≤ x, y < 1}.

(Remark: if you regard R2 as a piece of paper and try to glue the points which are related by

∼, then you will get a torus.)

(c) The proof is similar to (a) and R2/ ∼= {[(x, y)] : 0 ≤ x < 1, y ∈ R}. Again R2/ ∼ may be

regarded as a cylinder.

2. (a) (i) Let A ∈Mn(R), since A = AI where I is the identity matrix which is invertible, A ∼ A.

(ii) Let A,B ∈Mn(R) and A ∼ B, then there exists an invertible matrix Q such that B = AQ.

Then, we have A = BQ−1 where Q−1 is an invertible matrix and so B ∼ A.

(iii) Let A,B,C ∈ Mn(R) such that A ∼ B and B ∼ C. Then there exist invertible matrices

P and Q such that A = BP and B = CQ. Therefore, A = (CQ)P = C(PQ). Note that

the product of two invertible matrices is an invertible matrix, so PQ is invertible and

A ∼ C.

Therefore, ∼ is an equivalence relation on Mn(R).

(b) Note that [I] = {P ∈Mn(R) : P ∼ I}.

We claim that [I] is the set of all invertible matrices, which is denoted by GLn(R).

Firstly, if P ∈ [I], then P ∼ I which means P = IQ = Q for some invertible matrix Q.

Therefore, P is invertible and [I] ⊂ GLn(R).

Secondly, if P ∈ GLn(R), i.e. P is invertible. If we want to show P ∈ [I], we have to show

that P ∼ I, i.e. there exists some invertible matirx Q such that P = IQ, but it is true simply

by taking Q = P . Therefore, GLn(R) ⊂ [I].

Therefore, [I] = GLn(R).

(Remark: To show two sets A and B are the same, a standard way is showing that both

A ⊂ B and B ⊂ A are true.)

3. (a) Let a, b and c be integers.

Since a− a = 0 which is divisible by n, a ∼ a.

Suppose that a ∼ b, then b− a = np for some integer p.

Then a− b = −np = n(−p) which is divisible by n, so b ∼ a.

Suppose that a ∼ b and b ∼ c, then b− a = np and c− b = nq for some integers p and q.

Then c − a = (c − b) + (b − a) = n(p + q). p + q is an integer, so c − a is divisible by n and

c ∼ a.

As a result, ∼ is an equivalence relation.

(b) Zn := Z/ ∼= {[0], [1], · · · , [n]}.

(c) It suffices to show that if a ∼ a′ and b ∼ b′ then a · b ∼ a′ · b′.

Suppose that a′ − a = np and b′ − b = nq for some integers p and q.

Then (a′ · b′) − (a · b) = (a + np) · (b + nq) − a · b = n(aq + bp + npg). aq + bp + npg is an

integer, so (a′ · b′)− (a · b) is divisible by n and a · b ∼ a′ · b′.

(d) Note that [7001] = [1] and [492] = [2] in Z7, so [7001 · 492] = [7001] · [492] = [1] · [2] = [2].

Therefore, when 7001× 492 is divided by 7, the remainder is 2.
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4. Suppose that p and q are two mathematical statementg. If we want to show that the statement

p→ q is true, here are two of the ways to do:

• (Prove by contrapositive) Prove that (¬q) → (¬p), which is logically equivalent to p → q, is

true.

• (Prove by contradiction) We want to show the negation of the statement we want to prove

is false, i.e. contradiction exists. Note that p → q is logically equivalent to ¬p ∨ q and so its

negation is p ∧ (¬q).

For the statement in the question, p is the statement ”l and m are distinct lines”, q is the statement

|l ∩m| ≤ 1.

We will show p→ q is true by using different methods:

(Prove by contrapositive) Suppose that |l ∩m| > 1 (¬q), i.e. there exist two points A and B such

that both A and B lie on l as well as m. By axiom I1, l and m must be the same (¬p).

(Prove by contradiction) Suppose that l and m are distinct lines and |l ∩m| > 1 (p ∧ (¬q)). Then

there exist two points A and B such that both A and B lie on l as well as m. By axiom I1, l and

m must be the same which is a contradiction.

5. (a) By axiom I3, there exist three noncollinear points R, S and T .

(Case 1) P ∈ {R,S, T}
Without loss of generality, let R = P .

By axiom I1, there exists unique line lST such that S, T ∈ lST .

Note that lST does not contain P , otherwise it contradicts to the assumption that P , S

and T are noncollinear.

(Case 2) P /∈ {R,S, T}
By axiom I1, there exists unique lines lST such that S, T ∈ lST .

If P does not lie on lST , then lST is the line required.

If P ∈ lST . By axiom I1, there exists unique line lRS such that R,S ∈ lRS .

If P lies on lRS , then both P and S lie on lST and lRS . By axiom I1, lST = lRS which is

a line that contains R, S and T (Contradiction).

Therefore, P does not lie on lST

(b) By axiom I3, there exist three noncollinear points R, S and T .

By axiom I1, there exist unique line lRS , lST and lRT such that R,S ∈ lRS , S, T ∈ lST and

R, T ∈ lRT .

Firstly, lRS , lST and lRT are distinct lines, otherwise two of them will be the same line which

contains all R, S and T which is a contradiction.

Secondly, if there exists a point P such that P lies on all three of them, in particular P lies

on lRS and lST which forces P = S (By question 4 or you may say it is a direct consequence

of axiom I1. However, P = S which lies on lRT which contradicts to the assumption that P ,

S and T are noncollinear.

Therefore, there exists no point which lies on both lRS , lST and lRT .
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