THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017 Supplementary Exercise 1

- 1. Define a relation ~ on \mathbb{R}^2 such that $(x, y) \sim (x', y')$ if and only if $x x', y y' \in \mathbb{Z}$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Describe the elements of \mathbb{R}^2/\sim .
 - (c) Repeat (a) and (b) by changing the relation to be the following: $(x, y) \sim (x', y')$ if and only if $x - x' \in \mathbb{Z}$ and y = y'.
- 2. Let $M_n(\mathbb{R})$ be the set of all n by n real matrices. Suppose that \sim is a relation on $M_n(\mathbb{R})$ defined by $A \sim B$ if there exists an invertible matrix Q such that B = AQ.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Describe the elements of the equivalence class which contains the identity matrix I.
- 3. Let n be a positive integer and let ~ be a relation defined on \mathbb{Z} which is given by $a \sim b$ if b a is divisible by n.
 - (a) Show that \sim is an equivalence relation.
 - (b) Write down the elements of $\mathbb{Z}_n := \mathbb{Z}/\sim$.
 - (c) Prove that multiplication on \mathbb{Z} induces a multiplication on \mathbb{Z}_n .
 - (d) What is the remainder when 7001×492 is divided by 7? (Hint: What is $[7001 \cdot 492]$ in \mathbb{Z}_7 ?)
- 4. For an incidence geometry, prove that two distinct lines can have most one point in common, i.e. if l and m are distinct lines, then $|l \cap m| \leq 1$.
- 5. For an incidence geometry, prove that:
 - (a) if P be a point, then there exists at least one line that does not contain P;
 - (b) there exist three distinct lines such that no point lies on all three of them.

Lecturer's comment:

- 1. (a) (i) Let $(x, y) \in \mathbb{R}^2$, since $x x = y y = 0 \in \mathbb{Z}$, so $(x, y) \sim (x, y)$
 - (ii) Let $(x, y), (x', y') \in \mathbb{R}^2$ and $(x, y) \sim (x', y')$. Then $x x', y y' \in \mathbb{Z}$, which implies that x' x = -(x x') and y' y = -(y y') are in \mathbb{Z} and so $(x', y') \sim (x, y)$.
 - (iii) Let $(x, y), (x', y'), (x'', y'') \in \mathbb{R}^2$ such that $(x, y) \sim (x', y')$ and $(x', y') \sim (x'', y'')$. Then $x x', x' x'', y y', y' y'' \in \mathbb{Z}$. Therefore, $x x'' = (x x') + (x' x'') \in \mathbb{Z}$ and $y y'' = (y y') + (y' y'') \in \mathbb{Z}$. Hence, $(x, y) \sim (x'', y'')$.

Therefore, \sim is an equivalence relation on \mathbb{R}^2 .

- (b) ℝ²/ ~= {[(x,y)] : 0 ≤ x, y < 1}.
 (Remark: if you regard ℝ² as a piece of paper and try to glue the points which are related by ~, then you will get a torus.)
- (c) The proof is similar to (a) and $\mathbb{R}^2/\sim = \{[(x,y)] : 0 \le x < 1, y \in \mathbb{R}\}$. Again \mathbb{R}^2/\sim may be regarded as a cylinder.
- 2. (a) (i) Let A ∈ M_n(ℝ), since A = AI where I is the identity matrix which is invertible, A ~ A.
 (ii) Let A, B ∈ M_n(ℝ) and A ~ B, then there exists an invertible matrix Q such that B = AQ. Then, we have A = BQ⁻¹ where Q⁻¹ is an invertible matrix and so B ~ A.
 - (iii) Let $A, B, C \in M_n(\mathbb{R})$ such that $A \sim B$ and $B \sim C$. Then there exist invertible matrices P and Q such that A = BP and B = CQ. Therefore, A = (CQ)P = C(PQ). Note that the product of two invertible matrices is an invertible matrix, so PQ is invertible and $A \sim C$.

Therefore, \sim is an equivalence relation on $M_n(\mathbb{R})$.

(b) Note that $[I] = \{P \in M_n(\mathbb{R}) : P \sim I\}.$

We claim that [I] is the set of all invertible matrices, which is denoted by $GL_n(\mathbb{R})$.

Firstly, if $P \in [I]$, then $P \sim I$ which means P = IQ = Q for some invertible matrix Q. Therefore, P is invertible and $[I] \subset GL_n(\mathbb{R})$.

Secondly, if $P \in GL_n(\mathbb{R})$, i.e. P is invertible. If we want to show $P \in [I]$, we have to show that $P \sim I$, i.e. there exists some invertible matrix Q such that P = IQ, but it is true simply by taking Q = P. Therefore, $GL_n(\mathbb{R}) \subset [I]$.

Therefore, $[I] = GL_n(\mathbb{R})$.

(Remark: To show two sets A and B are the same, a standard way is showing that both $A \subset B$ and $B \subset A$ are true.)

3. (a) Let a, b and c be integers.

Since a - a = 0 which is divisible by $n, a \sim a$. Suppose that $a \sim b$, then b - a = np for some integer p. Then a - b = -np = n(-p) which is divisible by n, so $b \sim a$. Suppose that $a \sim b$ and $b \sim c$, then b - a = np and c - b = nq for some integers p and q. Then c - a = (c - b) + (b - a) = n(p + q). p + q is an integer, so c - a is divisible by n and $c \sim a$.

As a result, \sim is an equivalence relation.

- (b) $\mathbb{Z}_n := \mathbb{Z}/\sim = \{[0], [1], \cdots, [n]\}.$
- (c) It suffices to show that if a ~ a' and b ~ b' then a · b ~ a' · b'.
 Suppose that a' a = np and b' b = nq for some integers p and q.
 Then (a' · b') (a · b) = (a + np) · (b + nq) a · b = n(aq + bp + npg). aq + bp + npg is an integer, so (a' · b') (a · b) is divisible by n and a · b ~ a' · b'.
- (d) Note that [7001] = [1] and [492] = [2] in \mathbb{Z}_7 , so $[7001 \cdot 492] = [7001] \cdot [492] = [1] \cdot [2] = [2]$. Therefore, when 7001×492 is divided by 7, the remainder is 2.

- 4. Suppose that p and q are two mathematical statements. If we want to show that the statement $p \rightarrow q$ is true, here are two of the ways to do:
 - (Prove by contrapositive) Prove that $(\neg q) \rightarrow (\neg p)$, which is logically equivalent to $p \rightarrow q$, is true.
 - (Prove by contradiction) We want to show the negation of the statement we want to prove is false, i.e. contradiction exists. Note that $p \to q$ is logically equivalent to $\neg p \lor q$ and so its negation is $p \land (\neg q)$.

For the statement in the question, p is the statement "l and m are distinct lines", q is the statement $|l \cap m| \leq 1$.

We will show $p \to q$ is true by using different methods:

(Prove by contrapositive) Suppose that $|l \cap m| > 1 \ (\neg q)$, i.e. there exist two points A and B such that both A and B lie on l as well as m. By axiom **I1**, l and m must be the same $(\neg p)$.

(Prove by contradiction) Suppose that l and m are distinct lines and $|l \cap m| > 1$ $(p \land (\neg q))$. Then there exist two points A and B such that both A and B lie on l as well as m. By axiom **I1**, l and m must be the same which is a contradiction.

- 5. (a) By axiom I3, there exist three noncollinear points R, S and T.
 - (Case 1) $P \in \{R, S, T\}$

Without loss of generality, let R = P.

By axiom I1, there exists unique line l_{ST} such that $S, T \in l_{ST}$.

Note that l_{ST} does not contain P, otherwise it contradicts to the assumption that P, S and T are noncollinear.

(Case 2) $P \notin \{R, S, T\}$

By axiom **I1**, there exists unique lines l_{ST} such that $S, T \in l_{ST}$.

If P does not lie on l_{ST} , then l_{ST} is the line required.

If $P \in l_{ST}$. By axiom **I1**, there exists unique line l_{RS} such that $R, S \in l_{RS}$.

If P lies on l_{RS} , then both P and S lie on l_{ST} and l_{RS} . By axiom **I1**, $l_{ST} = l_{RS}$ which is a line that contains R, S and T (Contradiction).

Therefore, P does not lie on l_{ST}

(b) By axiom I3, there exist three noncollinear points R, S and T.

By axiom **I1**, there exist unique line l_{RS} , l_{ST} and l_{RT} such that $R, S \in l_{RS}$, $S, T \in l_{ST}$ and $R, T \in l_{RT}$.

Firstly, l_{RS} , l_{ST} and l_{RT} are distinct lines, otherwise two of them will be the same line which contains all R, S and T which is a contradiction.

Secondly, if there exists a point P such that P lies on all three of them, in particular P lies on l_{RS} and l_{ST} which forces P = S (By question 4 or you may say it is a direct consequence of axiom **I1**. However, P = S which lies on l_{RT} which contradicts to the assumption that P, S and T are noncollinear.

Therefore, there exists no point which lies on both l_{RS} , l_{ST} and l_{RT} .